Carpet-2 limits on the isotropic diffuse gamma-ray flux between 100 TeV and 1 PeV

V.B. Petkov1,2, D.D. Dzhappuev1, A.S. Lidvansky1, E.A. Gorbacheva1, I.M. Dzaparova1,2, A.U. Kudzhaev1, N.F. Klimenko1, A.N. Kurenya1, O.I. Mikhailova1, M.M. Khadzhiev1, A.F. Yanin1

1Institute for Nuclear Research of RAS
2Institute of Astronomy of RAS
Carpet-2 EAS array

Muon Detector:
175 plastic scintillation counters, 175 m²
$E_\mu \geq 1$ GeV

6 remote stations: 18 liquid scintillation counters (9 m²) each

“Carpet”: 400 liquid scintillation counters (200 m²)
The Carpet array (400 counters, 200 m²)
1st stage of the Muon Detector, 175 m², 175 plastic scintillation counters
Data set (1999 – 2011): EAS trigger + MD trigger

MD: 175 plastic scintillation counters → 5 units (35 counters each)

MD trigger: ≥ 2 or more MD units (≥ 2 muons)

→ this trigger is much more effective for showers from primary protons/nuclei, than for showers from primary gammas
Trigger efficiency as a function of primary energy for air showers induced by photons and protons primaries.
Experimental data, 1999 – 2011, $T_{\text{live}} = 3390$ days (9.28 y)

EAS selection conditions:

1) shower axes well within the Carpet ($\approx 160 \text{ m}^2$)
2) zenith angles $\theta \leq 40^\circ$
3) N_{ch} in the Carpet $\geq 10^4$
4) the number of fired counters in the Carpet ≥ 300.

\[
N_{\text{ch}} \geq 10^5
\]
\[
\Delta r \leq 0.35 \text{ m}
\]
\[
\sigma(N_{\text{ch}})/N_{\text{ch}} \leq 0.1
\]

angular resolution $\sim 1^\circ$

$\sim 10^5$ such showers for 3390 days of array operation

Energy release measurements in MD are used for the estimations of the number of muons n_μ
\(n_\mu - N_{ch} \) distribution: experiment and simulation gammas (CORSIKA + array response)

\(n_\mu \) – the number of muons in MD, \(N_{ch} \) – shower size

The line indicates the selection criteria for the showers from primary gamma-rays (there are no events below separating line).
Upper limits on the flux of diffuse gamma rays

\[I_\gamma = \frac{N_{90}}{S \cdot \Omega \cdot T \cdot \varepsilon_1 \cdot \varepsilon_2} \]

there are no events below separating line
\[\rightarrow N_{90} = 2.3 \]

\[S \cdot \Omega \cdot T = 6.2 \cdot 10^{14} \text{ cm}^2 \text{ sr s} \]

\(\varepsilon_1 \) - trigger and reconstruction efficiency
\(\varepsilon_2 \) - selection efficiency for \(\gamma \)-showers
\[\varepsilon_2 = \frac{N_{\text{tot}}(\geq E)}{N_{\text{select}}(\geq E)} \]
Upper limits on the flux of diffuse gamma rays
Prospects: “Carpet-3” EAS array

- Carpet-3 EAS array
- ~24 additional shower detectors (9 m² each)
- Muon detector: 410 m² (410 plastic scintillation counters): planned to operate since 2019
- 5 such shower detectors (with 9 plastic scintillation counters) are already installed above MD
Carpet-3 sensitivity to the flux of diffuse cosmic gamma rays

O. Kalashev, S. Troitsky, 2014
Conclusions

1) The Carpet-3 air shower array is under construction at the Baksan Neutrino Observatory by step-by-step upgrade and extension. The aim is to study diffuse gamma-ray background at energy above 100 TeV.

2) Two underground tunnels are filled with scintillation counters of total continuous area of 410 m². The detectors are totally equipped with electronics. Full-scale operation of 410 m² MD was planned to be started at the end of 2018.

3) 5 additional shower detectors are already installed above the MD. Every such detector contains 9 scintillation counters of 1 m² area each.

4) 19 additional shower detectors (9 m² each) should be installed during 2019 -2020.

5) After final accomplishment of this array it can be competitive in its class and will have a chance to get the world-best limit on the flux of gamma rays of cosmic origin. This will allow one to solve the problem of origin of high-energy astrophysical neutrinos detected by IceCube.