Signatures of a Local Cosmic Ray Source

Michael Kachelrieß

NTNU, Trondheim

A. Nerenov, MK, D. Semikoz

Outline of the talk

1. Introduction
 - GMF & calculation of CR trajectories
 - How smooth is the CR sea?

2. A recent nearby SN?
 - Antimatter fluxes
 - Breaks and violation of “universality”
 - Anisotropy: see talk on July, 9.

3. Conclusions
Our approach:

- CR above 0.1–1 TeV: neglect non-linear effects
 \[\Rightarrow \text{use prescribed model for Galactic magnetic field} \]
- calculate trajectories \(\mathbf{x}(t) \) via \(\mathbf{F}_L = q \mathbf{v} \times \mathbf{B} \).
- turbulent field:
 - Kolmogorov spectrum motivated by AMS-02
 - \(L_{\text{max}} \) from LOFAR: \(L_{\text{max}} \sim 10 \text{ pc in disc} \)
 - determine magnitude of random \(B_{\text{rms}}(x) \) from grammage \(X(E) \)
Our approach:

- CR above 0.1–1 TeV: neglect non-linear effects
 ⇒ use prescribed model for Galactic magnetic field
- calculate trajectories $x(t)$ via $F_L = qv \times B$.
- turbulent field:
 - Kolmogorov spectrum motivated by AMS-02
 - L_{max} from LOFAR: $L_{\text{max}} \sim 10$ pc in disc
 - determine magnitude of random $B_{\text{rms}}(x)$ from grammage $X(E)$
Our approach:

- CR above 0.1–1 TeV: neglect non-linear effects
 ⇒ use prescribed model for Galactic magnetic field
- calculate trajectories $x(t)$ via $F_L = qv \times B$.
- turbulent field:
 - Kolmogorov spectrum motivated by AMS-02
 - L_{max} from LOFAR: $L_{\text{max}} \sim 10 \text{ pc}$ in disc
 - determine magnitude of random $B_{\text{rms}}(x)$ from grammage $X(E)$
Need for anisotropic diffusion:

- determine magnitude of random $B_{\text{rms}}(x)$ from grammage $X(E)$
Need for anisotropic diffusion:

- determine magnitude of random $B_{\text{rms}}(x)$ from grammage $X(E)$

$⇒$ CRs escape too slowly
$⇒$ requires anisotropic diffusion
X-field in JF model:

- propagation along X field eases CR escape
How smooth is the CR sea?

- contribution of a single source:

\[I(E) \simeq \frac{c}{4\pi} \frac{Q(E)}{V(t)} \]

with

\[V(t) \simeq \pi^{3/2} D_{\perp}^{1/2} D_{\parallel}^{t^{3/2}} \]
How smooth is the CR sea?

- contribution of a single source:

\[I(E) \approx \frac{c}{4\pi} \frac{Q(E)}{V(t)} \]

with

\[V(t) \approx \pi^{3/2} D_\perp^{1/2} D_\parallel t^{3/2} \]

- isotropic diffusion: at \(E_* = 10 \text{ TeV} \) and

\[D_* \equiv D_\perp = D_\parallel = 5 \times 10^{29} \text{ cm}^2/\text{s} \]

\[E_*^{2.8} I(E_*) \approx \frac{1}{100} E_*^{2.8} I_{\text{obs}}(E_*) \]
How smooth is the CR sea?

- contribution of a single source:
 \[I(E) \sim \frac{c}{4\pi} \frac{Q(E)}{V(t)} \]

 with
 \[V(t) \sim \pi^{3/2} D_{\perp}^{1/2} D_{\parallel} t^{3/2} \]

- isotropic diffusion: at \(E_* = 10 \text{ TeV} \) and
 \(D_* \equiv D_{\perp} = D_{\parallel} = 5 \times 10^{29} \text{ cm}^2/\text{s} \)

 \[E_{*}^{2.8} I(E_*) \sim \frac{1}{100} E_{*}^{2.8} I_{\text{obs}}(E_*) \]

- anisotropic diffusion in JF model with \(\eta = 0.25 \) \(\Rightarrow D_{\parallel} \sim 5D_* \) and
 \(D_{\perp} \sim D_*/500 \)

 \(\Rightarrow \) volume is reduced by \(500/\sqrt{5} \approx 200 \)

 \(\Rightarrow \) single source can dominate observed flux at 10 TeV
The p, \bar{p}, e^+, e^- fluxes:

\[E^{2.7}F(E) \text{ in GeV}^{1.7}/(m^2 \text{ s st}) \]

- protons/5500
- antiprotons
- positrons/2
- electrons/25
Signatures of a young, local single source:

- secondary \bar{p} and e^+ flux have same shape as p
 - \bar{p} diffuse as $p \Rightarrow$ leads to constant \bar{p}/p ratio
 - \bar{p}/p ratio fixed by source age \Rightarrow \bar{p} flux is predicted
 - e^+ flux is fixed, break should be consistent with age
 - relative ratio of \bar{p} and e^+ depends only on their Z factors: $R = F_{e^+}/F_{\bar{p}} \simeq 1.8$ for $\alpha = 2.6$
Signatures of a young, local single source:

- secondary \bar{p} and e^+ flux have same shape as p
- fluxes consistent with 2–3 Myr old source

[MK, Neronov, Semikoz '15]
Signatures of a young, local single source:

- secondary \bar{p} and e^+ flux have same shape as p
- fluxes consistent with $2–3$ Myr old source
- 2-3 Myr SN explains anomalous 60Fe sediments [Ellis+ '96, ...]
- SNe connected to Local Bubble [Schulreich '17, ...]
Signatures of a young, local single source:

- secondary \bar{p} and e^+ flux have same shape as p
- fluxes consistent with 2–3 Myr old source
- 2-3 Myr SN explains anomalous 60Fe sediments
 \[Ellis+ '96,\ldots\]
- SNe connected to Local Bubble
 \[Schulreich '17,\ldots\]
- what about other CR puzzles?
 - breaks? rigidity dependence?
- B/C consistent? Electrons?
- anisotropy
Local source: nuclei fluxes

- same shape of rigidity spectra $F_A(R)$ for all nuclei A
Local source: nuclei fluxes

- same shape of rigidity spectra $F_A(R)$ for all nuclei A
- relative **normalisation** of “local source” $F^{(1)}(R)$ and “average” $F^{(2)}(R)$ varies,

\[
F_A(R) = C_A^{(1)} F^{(1)}(R) + C_A^{(2)} F^{(2)}(R)
\]
Local source: nuclei fluxes

⇒ explains breaks and variation of rigidity spectra
Local source: Secondary nuclei and B/C

- “local” grammage is fixed by positrons
Local source: Secondary nuclei and B/C

- "local" grammage is fixed by positrons
- local source gives plateau in B/C
Local source: Secondary nuclei and B/C

- “local” grammage is fixed by positrons
- local source gives plateau in B/C
Local source: Electrons

\[E^{2.7} F(E) \text{ in GeV}^{1.7} (\text{m}^2 \text{s}^{-1} \text{st}) \]

AMS-02 average
3 Myr SN prim
3 Myr SN sec
sum

\[F(E) \] in GeV

[MK, Neronov, Semikoz '17]
Conclusions

1. CRs propagate anisotropically

2. Single source:
 - plateau of δ points to dominance of single source in anisotropy
 - consistent explanation of secondaries: \bar{p}, e^+, B/C
 - breaks and variation in rigidity spectra of nuclei
 - 60Fe, Local Bubble